Needlelike motion of prolate ellipsoids in the sea of spheres
نویسندگان
چکیده
Molecular dynamics simulations of translational motion of isolated prolate ellipsoids in the sea of spheres have been carried out for several different values of the aspect ratio ~k!, obtained by changing either the length or the diameter of the ellipsoids, at several different solvent densities. The interaction among the spheres is given by the Lennard-Jones pair potential while that between spheres and ellipsoids is given by a modified Gay–Berne potential. Both the mean-square displacements of the center of mass of the ellipsoids and their orientational time correlation function have been calculated. It is found that at short to intermediate times, the motion of ellipsoids is anisotropic and primarily needlelike—the molecules prefer to move parallel to their long axis. The ratio of these two diffusion constants (D i and D') approaches k, suggesting a decoupling of D i from the length of the ellipsoid. The diffusion becomes isotropic in the long time with the total diffusion coefficient given by D i12D'. The crossover from the anisotropic to the isotropic diffusion is surprisingly sharp and clear in most cases.
منابع مشابه
The isotropic to nematic liquid crystal transition for hard ellipsoids: an Onsager-like theory and computer simulations
The phase transition from an isotropic to a nematic phase for a classical uid of hard ellipsoids has been studied using a version of a theory originally due to Onsager and by computer simulation. In the proposed form of the Onsager theory for the Helmholtz free energy, both the second and the third virial coeecients are treated exactly, but the fourth and higher virials are resummed in a manner...
متن کاملTunable Plasmonic Nanoparticles Based on Prolate Spheroids
Metallic nanoparticles can exhibit very large optical extinction in the visible spectrum due to localized surface plasmon resonance. Spherical plasmonic nanoparticles have been the subject of numerous studies in recent years due to the fact that the scattering response of spheres can be analytically evaluated using Mie theory. However a major disadvantage of metallic spherical nanoparticles is ...
متن کاملDynamical description of vesicle growth and shape change.
We systematize and extend the description of vesicle growth and shape change using linear nonequilibrium thermodynamics. By restricting the study to shape changes from spheres to axisymmetric ellipsoids, we are able to give a consistent formulation which includes the lateral tension of the vesicle membrane. This allows us to generalize and correct a previous calculation. Our present calculation...
متن کاملA Numerical Study of Flow and Heat Transfer Between Two Rotating Vertically Eccentric Spheres with Time- Dependent Angular Velocities
The transient motion and the heat transfer of a viscous incompressible flow contained between two vertically eccentric spheres maintained at different temperatures and rotating about a common axis with different angular velocities is numerically considered when the angular velocities are an arbitrary functions of time. The resulting flow pattern, temperature distribution, and heat transfer char...
متن کاملMean-field theory of random close packings of axisymmetric particles.
Finding the optimal random packing of non-spherical particles is an open problem with great significance in a broad range of scientific and engineering fields. So far, this search has been performed only empirically on a case-by-case basis, in particular, for shapes like dimers, spherocylinders and ellipsoids of revolution. Here we present a mean-field formalism to estimate the packing density ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2001